Lp ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD
نویسندگان
چکیده
We prove L estimates on the Hilbert transform along a measurable, non-vanishing, one-variable vector field in R. Aside from an L estimate following from a simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely related to a recent paper of the first author ([2]).
منابع مشابه
Classical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملSingular Radon Transforms and Maximal Functions under Convexity Assumptions
We prove variable coefficient analogues of results in [5] on Hilbert transforms and maximal functions along convex curves in the plane.
متن کاملSHARP Lp ESTIMATES FOR SINGULAR TRANSPORT EQUATIONS
We prove that L estimates for a singular transport equation are sharp by building what we call a cascading solution; the equation we consider studies the combined effect of multiplying by a bounded function and application of the Hilbert transform. Along the way we prove an invariance result for the Hilbert transform which could be of independent interest. Finally, we give an example of a bound...
متن کاملar X iv : 0 81 0 . 27 50 v 1 [ m at h . FA ] 1 5 O ct 2 00 8 RANK ONE PERTURBATIONS AND SINGULAR INTEGRAL OPERATORS
We consider rank one perturbations Aα = A+α( · , φ)φ of a self-adjoint operator A with cyclic vector φ ∈ H−1(A) on a Hilbert space H. The spectral representation of the perturbed operator Aα is given by a singular integral operator of special form. Such operators exhibit what we call ’rigidity’ and are connected with two weight estimates for the Hilbert transform. Also, some results about two w...
متن کاملUniform Bounds for the Bilinear Hilbert Transforms
It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. ∫ R f(x− αt)g(x− βt) dt t map Lp1(R) × Lp2(R) → Lp(R) uniformly in the real parameters α, β when 2 < p1, p2 < ∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], we deduce that the operators H1,α map L2(R)×L∞(R) → L2(R) uniformly in the real parameter α ∈ [0, 1]. This completes a program initiated...
متن کامل